Augmenting Weather Sensor data with Remote Knowledge Graphs

Jiantao Wu1,2 Fabrizio Orlandi1,3 Declan O’Sullivan1,3 Soumyabrata Dev1,2

July 19, IGARSS 2022

1The ADAPT SFI Research Centre, Ireland

2School of Computer Science, University College Dublin

3School of Computer Science and Statistics, Trinity College Dublin, Ireland
1. Motivation & Objective

2. Methodology

3. Experiments

4. Future Work
Motivation

In the data-driven meteorology area, the **variety** and the **amount** of data can often significantly affect the performance of analytical models\(^1\), *E.g.* machine learning, deep learning...

- **Traditional data acquisition**
 - Data bulks, fragmentation
 - Schema mismatch
 - Varied formats, *E.g.* CSV, JSON, HTML...

- **Knowledge graph (KG)**
 - Consistent format throughout Web, *I.e.* RDF
 - Linked Data techniques - interlinked KGs over HTTP
 - Semantics - data can be manipulated closer to how humans think!

\(^1\) Tarek AlSkaif et al. “A systematic analysis of meteorological variables for PV output power estimation”. In: *Renewable Energy* (2020)
To explore the remote KGs in its strength of acquiring data in an interoperable manner and how it can efficiently augment the sensor data for improved analytical models.

We have

- applied SPARQL language to gain a powerful access to multi-KG for meteorological data, and
- explored the effectiveness of multi-KG in rainfall detection improvement.

In the spirit of reproducible research, all the source code is available at https://github.com/futaoo/multiKG.
1. Motivation & Objective

2. Methodology

3. Experiments

4. Future Work
Knowledge graphs preparation

Figure: NOAA climate KG (Left) and PurpleAir air quality KG (Right)

Note:

- The schema has not to be fixed in a KG
- Schemas, E.g. *sosa*, can be shared among different KGs
- the query protocol (i.e. **SPARQL**) is identical for Two KGs
Federating SPARQL queries

BASE <http://jresearch.ucd.ie/climate-kg/>
PREFIX ca_prop: <http://jresearch.ucd.ie/climate-kg/ca/property/>

SELECT ?prcp ?humidity ?date
WHERE { #KG1
 ?obs ca_prop:sourceStation <resource/station/GHCND:EI000003969>;
 sosa:hasSimpleResult ?prcp;
 sosa:hasResult/ca_prop:withDataType <resource/datatype/PRCP>;
 sosa:resultTime ?date .
}
SELECT ?humidity ?date
WHERE { #KG2
 SERVICE <http://jresearch.ucd.ie/kg/air-pollutants/sparql> {
 ?atm_obs sosa:madeBySensor <purpleair/sensor?id=26695>;
 sosa:hasSimpleResult ?humidity;
 sosa:observedProperty <http://jresearch.ucd.ie/climate-kg/purpleair/Temperature>;
 sosa:resultTime ?date.
 }\}} FILTER (YEAR(?date)=2019)}

- Query multiple KGs at once
 - with shared semantics
 - “acquire (data) as you go”

- Time alignment for multiple time series
 - to prepare multivariate time series
 - to increase the predicting accuracy!
1. Motivation & Objective

2. Methodology

3. Experiments

4. Future Work
Enhanced rainfall detection with Multi-KG

Task Definition:

The probability threshold is set to be 0.5 above which we claim the rainfall will happen on a future day. Let \mathbf{x}^t, $\mathbf{x} \in \mathbb{R}^N$ be a n-dimensional vector at time step t. $\mathbf{x}^t = (x_1^t, x_2^t, ..., x_N^t)$ where x_n^t denotes a KG1’s meteorological variable or KG2’s atmospheric variable at time step t. $y \in \{0, 1\}$ denotes the binary label and $y = 1$ (PRCP > 0) means that rainfall occurs. Hence a formal definition of rainfall detection on time step t based on the observations of previous k time steps can be formulated as Equation 1:

$$P^t(y = 1|(\mathbf{x}^{t-1}, \mathbf{x}^{t-2}, ..., \mathbf{x}^{t-k}))$$ (1)
Motivation & Objective

Methodology

Experiments

Future Work

Enhanced rainfall detection with Multi-KG

Results:

Table: Training data constructed for 2-step multivariate time series classification

<table>
<thead>
<tr>
<th></th>
<th>Humidity (t-2)</th>
<th>PRCP (t-2)</th>
<th>TAVG (t-2)</th>
<th>Humidity (t-1)</th>
<th>PRCP (t-1)</th>
<th>TAVG (t-1)</th>
<th>Rain (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>57.95</td>
<td>1.2</td>
<td>13.3</td>
<td>51.37</td>
<td>0.0</td>
<td>14.9</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>51.37</td>
<td>0.0</td>
<td>14.9</td>
<td>51.49</td>
<td>9.3</td>
<td>11.5</td>
<td>yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>366</td>
<td>37.19</td>
<td>0.0</td>
<td>14.9</td>
<td>39.92</td>
<td>0.0</td>
<td>14.6</td>
<td>no</td>
</tr>
</tbody>
</table>

Table: Performance evaluation of rainfall detection on two datasets: (a) KG1’s meteorological data, and (b) dataset (a) enhanced with KG2’s atmospheric variables.

<table>
<thead>
<tr>
<th>Models</th>
<th>Datasets</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>KG1</td>
<td>0.66</td>
<td>0.63</td>
<td>0.65</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>KG1 + KG2</td>
<td>0.71</td>
<td>0.77</td>
<td>0.74</td>
<td>0.68</td>
</tr>
<tr>
<td>SVC</td>
<td>KG1</td>
<td>0.65</td>
<td>0.73</td>
<td>0.69</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>KG1 + KG2</td>
<td>0.70</td>
<td>0.85</td>
<td>0.76</td>
<td>0.69</td>
</tr>
<tr>
<td>KNN</td>
<td>KG1</td>
<td>0.69</td>
<td>0.51</td>
<td>0.59</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>KG1 + KG2</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.64</td>
</tr>
</tbody>
</table>
1. Motivation & Objective

2. Methodology

3. Experiments

4. Future Work
Future Work

We will work on:

- Developing an advanced pipeline with a graphical user interface to assist users in augmenting KG data for machine learning applications, and
- Incorporating more data domains for climate research, such as remote sensing data, tourism data, and so on.