Enhancing Intra-Hour Solar Irradiance Estimation Through Knowledge Distillation and Infrared Sky Images

Ifran Rahman Nijhum1,2, Dewansh Kaloni3, Paul Kenny4, Soumyabrata Dev1,2
1The ADAPT SFI Research Centre, Dublin, Ireland
2School of Computer Science, University College Dublin, Ireland
3Birla Institute of Technology And Science, Pilani, India
4School of Architecture, Planning and Environmental Policy, University College Dublin, Ireland

Introduction

• Solar energy is abundant but intermittent, posing challenges for stability in the global energy system.
• Precise early forecasting is crucial for integrating solar energy seamlessly into power grids.
• Deep learning and computer vision have enabled the development of image-based solar irradiance forecasting models.
• Model compression techniques, like knowledge distillation, have been explored to boost accuracy with minimal computational resources.
• This research introduces a novel knowledge distillation approach for intra-hour solar irradiance estimation, leveraging infrared sky images to enhance a lightweight CNN model.

Dataset

Figure 1. Sample images from the Girasol [1] dataset. Open-cv colormap was implemented for better visualization.

Results

We evaluate our model’s performance by doing a comprehensive analysis of using key metrics such as MSE, RMSE and the number of parameters of each model.

Contribution

• Proposed a novel sigmoid-based knowledge distillation loss function for regression tasks.
• Improved the accuracy of a simple CNN-regression network, minimizing the MSE loss from 3015.63 to 2540.67

Methodology

• Knowledge distillation involves transferring knowledge from a large pre-trained model (Teacher Model) to a smaller, more efficient model (Student Model)
• The student model is trained using a loss function which takes into account both the actual target and the teacher model’s predicted values.
• In our method, we soften our student and teacher logits using a modified sigmoid function stated at Equation (1)
• The total loss is calculated as Equation (2)

Modified Sigmoid loss:

\[\sigma'(x) = \frac{1}{1 + e^{-\tau x}} \]
\[\text{Distillation Equation:} \]
\[L = (1-\alpha) L_{kh}(Ps,Y) + \alpha L_{mse}(Pt',Ps') \]
Here,
\[a, \tau: \text{Hyperparameters} \]
\[Ps: \text{Student Logs} \]
\[Y: \text{Actual Target} \]
\[L_{kh}: \text{Cross-entropy loss} \]
\[Pt': \text{Softened Teacher Logs} \]
\[\alpha: \text{Softmax function} \]
\[Ps': \text{Softened Student Logs} \]

References